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Abstract: Unimodular compound structural matrix and the transformation theory are studied. Conceptually, unimodular 

compound structural matrix is a matrix set with layered compound structure constructed by taking some special original matrix 

as element and structure mode, thus having some basic properties such as unimodular, orthogonality and symmetry. Theoretically, 

the transformation theory of unimodular matrix have been established, using which the natural exponential matrix function of 

real variable and unimodular matrix can be solved efficiently; and when it is applied to the transformation of vector variable, the 

transformation law of variables and the invariants related to the matrix symmetry have obtained general conclusions. The results 

of this study are the extension of Pauli matrix, Dirac algebra and Euler equation, thus have potential applications in mathematics 

and physics: mathematically, which can be used as compound special matrixes to describe the compound special unitary group, 

to construct the algebraic structure of layered linear space, and to analytically calculate the exponential function of unimodular 

matrix; physically, which can be used to describe the new symmetry of intrinsic space, to express the recombination of basic 

particle structures, and to analysis the correlation transformation of physical mechanism. 

Keywords: Unimodular Compound Matrix, Special Unitary Group, Symmetric Transformation, Intrinsic Space, Pauli Matrix, 

Dirac Algebra, Euler Equation 

 

1. Introduction 

The theory and method of matrix has become an 

indispensable tool in the field of modern science and 

technology [1, 2]. For instance, in mathematics and 

mathematical physics [3-6], Pauli matrix is a set of three 2×2 

unitary Hermite complex matrices named physicist Wolfgang 

Pauli. In quantum mechanics, on the basis of Pauli matrix, 

Dirac matrices were introduced by Paul Dirac who was a 

British theoretical physicist and one of the founders of 

quantum mechanics. By the introduction of Dirac matrix, the 

problem of quantum mechanics with relativity principle was 

solved, and also Dirac algebra was developed. Mathematically, 

Dirac algebra refers to the algebraic structure in linear space 

constructed with 16 Dirac matrices as basis vectors, which is 

similar to rings in order to avoid the problem of 

non-conservation of probability in Klein Gordon equation. So, 

the problem of physics were solved, and the new physical 

phenomena were predicted. Obviously, under the inspiration 

of physical laws, physicists put forward new mathematical 

concepts, which not only solved physical problems, but also 

improved mathematical theory. In recent years, matrix theory 

has been further deeply and comprehensively extended to the 

developments of mathematics and the applications of physics 

[7-10]. 

In my researches on theoretical physics and particle physics, 

I have found some problems: (1) In addition to rotational 

symmetry, there are other symmetries in physical intrinsic 

space. (2) Structured description is the effective way on basic 

particle attributes and classification. (3) Modern science and 

natural phenomena were developed on the basis of basic 

models, which should be established from the original 

principles. How to solve these problems? Inspired by the 

works of Euler, Pauli, Dirac and other great scientists, I 

proposed the concept of unimodular matrix with compound 

structure, which can be used to describe the new symmetry of 

intrinsic space, to express the recombination of structural 

elements, and to analysis the correlation transformation of 

physical mechanism. 
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2. Unimodular Matrix with Compound 

Structure 

2.1. Original Structural Matrix 

Firstly, taking 0, 1 and -1 as the matrix elements, the 

original structural matrix iτ  is defined as follows: 

0

1 0

0 1
τ  =  

 
, 1

0 1

1 0
τ  =  

 
, 

2

0 1

1 0
τ

− =  
 

, 3

1 0

0 1
τ  =  − 

               (1) 

In the set of these matrices, 0 1 3, ,τ τ τ  are just the Pauli 

matrices, only 2τ  uses 1 instead of the imaginary number i 

from Pauli matrix 2σ . Accordingly the matrix self-actions 

and interactions are: 

02

0

, 0,1,3

, 2
i

i

i

τ
τ

τ
=

=  − =
, 1 2 3τ τ τ= , 2 3 1τ τ τ= , 3 1 2τ τ τ= −  (2) 

In order to express the above matrix relations and to 

facilitate the application in the compound structural matrix, an 

index varied label function ( , )f i j  is induced according to 

the interaction relationship between matrices: 

(1,2) (2,1) 3, (2,3) (3,2) 1, (3,1) (1,3) 2

( , ) 0 ( 0,1,3), (2,2) 0

f f f f f f

f i i i f

=− = =− = =− =−
= = =−     (3) 

where the negative number i−  represent iτ− , namely 

i iτ τ− = − . 

2.2. Compound Structural Matrix 

Taking iτ  as element and structure model of compound 

matrix, the multi-layer model can be constructed. Using x 

instead of element value 1 in original matrix iτ , derivative 

matrices with composite structure are: 

0

0
( )

0

x
x

x
τ  =  

 
, 1

0
( )

0

x
x

x
τ  =  

 
, 

2

0
( )

0

x
x

x
τ

− =  
 

, 3

0
( )

0

x
x

x
τ  =  − 

        (4) 

For instance, suppose 0 1 2 3, , ,x τ τ τ τ=  separately, bring 

them in the above formula can get: 

1

0 1

1

0
( )

0

τ
τ τ

τ
 

=  
 

, 
2

1 2

2

0
( )

0

τ
τ τ

τ
 =  
 

, 

3

2 3

3

0
( )

0

τ
τ τ

τ
− 

=  
 

, 
0

3 0

0

0
( )

0

τ
τ τ

τ
 

=  − 
       (5) 

The above definition of compound structure based matrix 

should be understood as double-layer structure, which can be 

extended to multi-layer matrix according to the same 

construction mechanism. In this paper, we take three layers as 

an example, and the compound matrix with three-layer 

structure is: 

( , , ) ( ( ))i j kM i j k τ τ τ= , , , 0,1,2,3i j k =        (6) 

In the expression of this three-layer structure, indexes k, j 

and i identify the unit type, intermediate structure and overall 

framework, separately. For example: 

3

3

3

3

0 0 0

0 0 0
(1,2,3)

0 0 0

0 0 0

M

τ
τ

τ
τ

− 
 
 =
 −
 
 

, 

2

2

2

2

0 0 0

0 0 0
(3,1,2)

0 0 0

0 0 0

M

τ
τ

τ
τ

 
 
 =
 −
 − 

 

The corresponding specific values of these two matrix are: 

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
(1,2,3)

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

M

− 
 
 
 
 − =
 −
 
 
 
  − 

,

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0
(3,1, 2)

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

M

− 
 
 
 −
 
 =
 
 

− 
 
  − 

 

Taking the three-layer matrix as examples, their matrix 

attributes and conversion properties can be derived and 

extended to the general matrix with more-layer structure, 

which include: 

(1) ( , , ) ( , , ) ( ( , ), ( , ), ( , ))M i j k M l m n M f i l f j m f k n= , for 

instance:  

(3,1, 2 ) (1, 2 , 3) ( (3,1) , (1, 2 ) , ( 2 , 3))

( 2 , 3,1) ( 2 , 3,1)

M M M f f f

M M

=
= − = −  

(2) [ ]( , , ), ( , , ) 0M i j k M l m n
+

= , on condition that 

, ,i l j m k n≠ ≠ ≠ . 

(3) 
2( , , ) (0,0,0)M i j k M= = I , on condition that: , , 2i j k ≠  

or some indexes are equal to 2 and also the number is even; 
2

( , , ) (0,0,0)M i j k M= − = −I  on condition that: some indexes 

are equal to 2, and the number is odd. 

(4) det( ( , , )) 1M i j k = . 
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(5) trace( ( , , )) 0M i j k = , trace( (0,0, 0)) 0M ≠ . 

(6) 
T

( , , ) ( , , )M i j k M i j k = I , the orthogonality. 

3. Transformation Law of Unimodular 

Matrix 

3.1. Expression of Exponential Function with Unimodular 

Matrix 

Expression theory: for an orthogonal unimodular matrix U, 

its natural exponential matrix function following with real 

variable x can be expressed as: 

exU a bU= +I                 (7) 

Where I is unit matrix having the same dimension with U, 

and: 

( ) 2

2

1 1
e e , (e e ), when :

2 2

cos( ), sin( ), when :

x x x xa b U

a x b x U

− − = + = − =

 = = = −

I

I

 (8) 

Prove: According to Taylor's formula [11-13], the 

expression of matrix exponential function following with 

variable x is 

2 3 4 5
( ) ( ) ( ) ( )

e
2! 3! 4! 5!

xU xU xU xU xU
xU= + + + + + +⋯I    (9) 

When U
2
=I, the Taylor's expression of matrix function can 

be simplified to: 

2 4 3 5

e 1
2! 4! 3! 5!

xU x x x x
x U

   
= + + + + + + +   
   

⋯ ⋯I  (10) 

In which, according to Taylor's formula of ex , the first term 

is 

( ) ( ) ( )
2 32 4 2 31 1

1 1 1 e e
2! 4! 2 1! 2! 3! 1! 2! 3! 2

x x
x xx x x x x x −

  − −    −
 + + + = + + + + + + + + + = +             

⋯ ⋯ ⋯  

The second term is 

( ) ( )2 33 5 2 31 1
1 1 (e e )

3! 5! 2 1! 2! 3! 1! 2! 3! 2

x x
x xx x x x x x

x −
  − −    −
 + + + = + + + + − + + + + = −             

⋯ ⋯ ⋯  

When U
2
=-I, the result is just Euler formula, which is 

deduced by Euler according to Taylor's formula under the 

assumption of imaginary number i, here U
2
=-I is similar to 

i
2
=-1. 

3.2. Invariants of Symmetric Transformation 

Conservation theory: when ( )1,2,3iU i= =τ , the 

transformation by exU  is a symmetric transformation, and the 

corresponding invariants of dependent variable are 

determined by the symmetry of transformation matrix iτ . 

Suppose vector variable is [ ]X Y , matrix e ix
A = τ , the 

transformation effect has its own characteristics determined 

by iτ . 

(1) For 1τ : 

1

1
e

x
a b

A a b
b a

 = = + =  
 

τ
I τ , 

'

'

X a b X aX bYX
A

Y b a Y bX aYY

+        = = =        +       
, 

Thus, 
' 2 '2 2 2 2 2 2 2

( ) ( ) ( )( )X Y aX bY bX aY a b X Y− = + − + = − − , and for 

any real variables x categorized by 1τ : 

( ) ( )
2 2

2 2 2 2 2 21 1 1
e e (e e ) e 2e e e e 2e e e 1

2 2 4

x x x x x x x x x x x x
a b

− − − − − −   − = + − − = + + − + − =   
   

 

As the result, '2 '2 2 2X Y X Y− = − , which indicates that the 

invariant of transformation by 1exτ  is 2 2X Y− . 

(2) For 2τ : 

2

2e
x

a b
A a b

b a

− = = + =  
 

τ
I τ , 

'

'

X a b X aX bYX
A

Y b a Y bX aYY

− −        = = =        +       
, 

Thus, 
'2 '2 2 2 2 2 2 2

( ) ( ) ( )( )X Y aX bY bX aY a b X Y+ = − + + = + + , and for 

any real variables x categorized by 2τ : 

2 2 2 2cos( ) sin( ) 1a b x x+ = + = . So '2 '2 2 2X Y X Y+ = + , indicating that 

the invariant of transformation by 2e
xτ  is 2 2X Y+ . 

(3) For 3τ : 

3

3

0
e

0

x
a b

A a b
a b

+ = = + =  − 

τ
I τ , 

'

'

0

0

X a b X aX bXX
A

Y a b Y aY bYY

+ +        = = =        − −       
. 

Thus, 
' ' 2 2

( )( ) ( )X Y a b a b X Y a b X Y⋅ = + − ⋅ = − ⋅ , and for 

any real variables x categorized by 3
τ : 
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( )
2 2

2 2 1 1
e e (e e ) 1

2 2

x x x x
a b

− −   − = + − − =   
   

. So ' 'X Y X Y⋅ = ⋅ , 

indicating that the invariant of transformation by 3e
xτ  is 

X Y⋅ . 

(4) For unimodular compound structural matrix: 

The transformation effects expressed by above (1), (2) and 

(3) also holds for the unimodular matrix ( , , )M i j k  with 

composite structures. When matrix function 
( , , )

e ( , , )
xM i j k

a bM i j k= +I  is applied to transformation on 

[ ]X Y , where X and Y represent multi-dimensional vector 

variables, and their dimensions are equal to half of the 

transformation matrix dimensions. Specifically, 

[ ]T T' ' ( , , )xM i j kX Y e X Y  =  , and the corresponding invariants 

are: 

2 2

2 2

, when : 1, and , 2

= , when : 3, and , 2

, when : 2, or one of , =2

X Y i j k

Invariant X Y i j k

X Y i j k

 − = ≠
 ⋅ = ≠
 + =

     (11) 

3.3. Computational Verification 

Example 1: in a 8 dimensional intrinsic vector space, 

assume that [ ]1 2 3 4X =  and [ ]5 6 7 8Y = . When 

[ ]T
X Y  is transformed by (1,2,3)M , what are the results? The 

calculations are as follows: 

[ ] [ ]T T T' ' (1,2,3) 7 8 5 6 3 4 1 2X Y M X Y  = = − − − −  . 

Indicating that: the transformation of the first level was 

finished by 1τ , results in that X and Y displace each other; the 

transformation of the second and third levels were finished by 

2τ  and 3τ  respectively, results in that the displacement and 

inversion of the corresponding positions are transformed. The 

conservation: 
2

(1,2,3) (0, 0,0) (0,0,0)M M M= − = − = −I , 

(1,2,3) exp( (1,2,3)) (1,2,3)M xM a bM= = +I , so a=0, b=1, which 

satisfy the condition that 
2 2 2 2

cos( ) sin( ) 1a b x x+ = + = . 

Theoretically, the invariant of transformation is 2 2X Y+ , which 

are in good agreement with the calculation results: 
2 2

204X Y+ = , '2 '2
204X Y+ = . 

Example 2: in a 8 dimensional intrinsic space, assume that 

[ ]1 2 3 4X = , [ ]5 6 7 8Y = , 4.8x =  and exp( (3,1,0))A xM= . 

When [ ]T
X Y  is transformed by A , what are the results? The 

calculations are as follows: 

[ ]T T' '
exp(4.8 (3,1, 0))X Y M X Y  =   

[ ]T
243.0126 364.5230 243.0291 364.5395 121.4610 121.4528 121.5598 121.5680= − −

 

Because that: 
2

(3,1,0) (0,0,0)M M= = I , 60.7593a = , 

60.7511b = , and det( ) 1A = . So 2 2 1a b− = , the invariant of 

transformation is X Y⋅ . The calculated results are in good 

agreement with the theoretical ones: 70X Y⋅ = , ' '
70X Y⋅ = . 

4. Summary 

The concept and transformation theory of unimodular 

compound structural matrix are found and put forward in the 

research of theoretical physics and particle physics. In terms 

of contents and models, this is an extension of Pauli matrix 

and Dirac algebra. In applications, this can be used to describe 

the new symmetry of intrinsic space, to express the 

recombination of structural elements, and to analysis the 

correlation transformation of physical mechanism. For the 

reliabilities, some correctness are proved reasonably in theory, 

and some correctness are verified by numerical calculations. 

Next, the completeness and application scope should be 

deeply studied. 
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