Mathematics Letters

2021; 7(1): 1-6
http://www.sciencepublishinggroup.com/j/ml

doi: 10.11648/7.m1.20210701.11

ISSN: 2575-503X (Print); ISSN: 2575-5056 (Online)

kR o 2 >y -
sclencePlC

Science Publishing Group

Symmetry and Asymmetry for nth-degree Algebraic
Functions and the Tangent Lines

Norihiro Someyama
Shin-yo-ji Buddhist Temple, Tokyo, Japan

Email address:
philomatics @outlook.jp

To cite this article:

Norihiro Someyama. Symmetry and Asymmetry for nth-degree Algebraic Functions and the Tangent Lines. Mathematics Letters.

Vol. 7, No. 1, 2021, pp. 1-6. doi: 10.11648/j.m1.20210701.11

Received: November 21, 2020; Accepted: January 13, 2021; Published: March 10, 2021

Abstract: We reveal one relationship between each degree algebraic function and its tangent line, via its derivative. In
particular, it is easy to see and well known that asymmetry (resp. symmetry) of tangent lines of a quadratic (resp. cubic)
function at its minimum and maximum zero points, but it is not easy to investigate symmetry and asymmetry of them of nth-
degree functions if n is 4 or more. We thus investigate the relationship between the slopes of the tangent lines at minimum
and maximum zero points of the nth-degree function. We will in this note be able to know some sufficient conditions for the
ratio of their slopes to be 1 or -1. By these, we can understand that tangent lines at minimum and maximum zero points have
a symmetrical (resp. asymmetrical) relationship if the ratio of their slopes is -1 (resp. 1). In other words, these properties give
us symmetry and asymmetry of the functions. Furthermore, we also mention the property of the discriminant of a quadratic

function.
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1. Introduction

It is important to focus on symmetry in mathematics.
Symmetry simplifies solving problems and reveals the
qualitative aspects of mathematical problems and / or
mathematical objects. For example, symmetry is effective for
problems on the graphs of functions (See e.g. [12] for various
graphs of explicit and implicit functions). We thus consider
symmetry and asymmetry for nth-degree algebraic functions
and those tangent lines (See e.g. [4] for the history of tangents
of functions) in this note.

In Section 2, we first check asymmetry for the tangent lines
of a quadratic function (n = 2). We also mention the property
of the discriminant of a quadratic function in that section.

In Section 3, we next check symmetry for the tangent lines
of a cubic function (n = 3). It will be known again, in that
section, that cubic functions have symmetry at the inflection
points and that property is useful when considering cubic
functions.

In Section 4, we finally check symmetry and asymmetry for
the tangent lines of an nth-degree algebraic function h. It will
be known, in that section, that symmetry and asymmetry of the

tangent lines of h at the minimum and maximum zero points of
h generally depend on the degree n and the position of the zero
points. Here, zero points of an nth-degree algebraic equation
are the real solutions of it.

2. Quadratic Equations, Functions and
the Tangent Lines
We consider a quadratic equation
ar? +br+c=0 (D

where a € R\ {0} and b, ¢ € R. We suppose that (1) has two
different real solutions «, 8 such that o < . It is well known
that the solutions (roots) of (1) is given by

—b+ Vb? — 4ac
p— VT TR
2a

and this is called the quadratic formula. The above two roots
are real numbers if b2 — 4ac > 0; are equal real numbers if
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b? — 4ac = 0; are imaginary numbers if b> — 4ac < 0. In this
way, D := b? — 4ac is a judgment value that separates kinds
of the roots, so D is called the discriminant of (1).

We put f(x) = axz®+bx +c. Then, f is called the quadratic
function and it corresponds the parabola whose vertex is
(—=b/2a, —(b* — 4ac)/4a):

b\> b2 —dac

(Thus, remark that the discriminant shows how far the function
is from the origin.) It is also well known that the coefficients
a, b and c represent the ‘ratio’ of the parabola, the slope of
tangent line at the y-intercept and the y-intercept respectively.
Throughout this note, we denote the first-order (resp. second-
order) derivative ([5, 8, 13] etc.) of a differentiable function f
of arbitrary degree by f’ (resp. f"'):

df
!/ ——
/ dx
Proposition 2.1. The slopes of two tangent lines at zero
points «, 8 (a # 3) of f are different signs, that is,

\/ ’
Figure 1. Quadratic function and the tangent lines.

proof. It is obvious, since the parabola f is symmetric with
respect to the axis © = —b/2a. (Also, refer to Theorem 4.1
later.)

We prove that the discriminants of quadratic equations
can be represented by those derivatives. Recall that the
discriminant of (1) is given by b — 4ac.

Proposition 2.2. Let D = b?> — 4ac be a discriminant of (1).
Then, one has

D ={f(a)}* = {f'(8)}.

proof. Let the roots o and (3 be represented by ¢: o = « or
o = . We multiply both sides of

ac?+bo+c=0
by 4a. Then,

0 = 4a0? + 4abo + 4ac = (2a0 + b)* — b* + 4ac,

so we have
D =b* — dac = (2a0 + b)* = {f'(0)}*.

This completes the proof.
Remark 2.1. i) It is known [14] that the discriminant of
any degree algebraic equation in general expresses by

using all roots of it. To be specific, if aq,...,a, are
roots of the nth-degree algebraic equation
n
fe)=a][@-a;)=0 @
j=1

where a # 0, the discriminant D of f can be written as

D= (_1)(n—1)n/2an—2 ﬁ f/(aj)'

Jj=1

ii) It is also known [14] that if we write M for the bound
on the absolute value of any root «¢; of (2), one has

VD]

| — | > @A

forany j # k. Here, it goes without saying that D stands
for the discriminant of f.

iii) We can see deeper consideration for discriminants in e.g.
[3].
Example 2.1. Proposition 2.1 can be applied to the following
problem:
‘Suppose that the quadratic equation 322 + pxz + 1 = 0 has
aroot —1. Then, find the value of p and the other root.’
The solution is as follows:
Since —1 is a root of the given quadratic equation,
3(-1)?+p(-1)+1=0 ie. p=4.
Also, the derivative f'(z) = 6z +pof f(z) := 322 +pr+1
implies
1
oa=—c

6o +4=—{6(—1)+4} iec. :

by Proposition 2.1. (Or, we may use Viete’s formula, which
is the relationship between roots and coefficients, to solve this
problem.)

Example 2.2. Proposition 2.2 can be applied to the following
problem:

‘Find roots of the quadratic equation 222 — 5z +1 = 0.

The solution without the quadratic formula is as follows:

On the hand, the discriminant of the given quadratic
equation is

D=(-5?2-4-2-1=1T.

On the other hand, let o be a root of the given quadratic
equation. Then, the above discriminant can be also written as

D = (4a — 5)?
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by Proposition 2.2. Hence, by solving
(4o — 5)? =17,

we have the roots
5+ V17
o= —
4

The quadratic formula is famous as one of mathematical
formulas which are easy to forget. So, Proposition 2.2 is useful
in the sense of that.

3. Cubic Equations, Functions and the
Tangent Lines

We consider in this section a cubic equation
g(x) =az® +br* +cx+d=0 3)

where @ € R\ {0} and b,¢,d € R. (There are many known
ways to find the roots of (3), including the Tartaglia-Cardano
formula.) It is well known that cubic functions have a lot
of interesting properties. We here investigate whether the
same propositon as Proposition 2.1 holds for (3). Recall the
following terminology.

Definition 3.1 ([2,6,7, 13, 15] etc.). Let F'be a C?2-function.
The points which are zero points of F" and are points where
the sign of F"”’(x) changes before and after the points are called
inflection points of F'.

Proposition 3.1. Let g be a cubic function with all its zero
points being single, and let « (resp. 8) be the minimum (resp.
maximum) zero point of g. We suppose that the inflection point
of g is a zero point of g. Then, the slopes of two tangent lines
at zero points «, 5 of g are same signs, that is,

Figure 2. Cubic function and the tangent lines.

proof. Itis well known that any cubic function is symmetric
with respect to the inflection point. Indeed, it is sufficient
to see that g(z) = az® + ¢z is symmetric with respect to
the origin by translating of the inflection point to the origin.
Hence, two tangent lines at zero points «, 8 of g are parallel.

This completes the proof.
Remark 3.1. 1) Proposition 3.1 is obviously nonsense
or does not hold, if g has even one zero point with
multiplicity of 2 or more.

ii) By virtue of Proposition 3.1, we can find that the tangent
lines of g are parallel if they are symmetric with respect
to the inflection point of g.
If the inflection point is not the zero point, Proposition 3.1
does not generally hold as we can see the following example.
Example 3.1 (Cubic function whose inflection point is not
the zero points). We see the counterexample of Proposition
3.1. Consider a cubic function

g(z) = (x —10)(z — 1)(x + 1).
Then, g has three zero points —1, 1, 10. Since
g'(@) = (@~ D@+ 1)+ (2~ 10)(2+1) + (¢ — 10)(z — 1)

and
g”(m) = Q(S‘T - 10)7

the inflection point of ¢ is 10/3 and this is not the zero point
of g. Moreover, we have

g (=1) =22 # 99 = ¢'(10).

4. nth-degree Algebraic Equations,
Functions and the Tangent Lines

Let us give general theorems which include Proposition 2.2
and Proposition 3.1. In order to do that, we mention the
following easy fact in advance.

Theorem 4.1. Let n > 2 and h be an nth-degree algebraic
function. We suppose that « (resp. ) is the minimum (resp.
maximum) zero point of h. Then,

1) if h is symmetric with respect to the y-axis, we have

W) _ .
WB)
2) if h is symmetric with respect to the origin, we have
M) _
h'(B) '

Proof. The proof is trivial.

Theorem 4.2.1Let n > 3 be odd and h an nth-degree
algebraic function. We suppose that « (resp. () is the
minimum (resp. maximum) zero point of h. If all the constants
of even-power-terms of h are 0 (but the constant term does not
have to be 0) and || = |3, then
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proof. From the assumption, we should consider

k+1

h(l‘) = Z a2j_1z2j71
Jj=1

where n = 2k + 1 with £ > 1. Then, since we have

k+1 )
()= ag-1(2j — 1)z*0~,
j=1

it obviously holds that

h'(e) = 1'(B)

by virtue of another assumption ‘|| = |5|.” Hence, the proof
has been finished.
Remark 4.1. 1) As the proof shows, the important thing

is /. So, it is alright whether ap = 0 or not because
the constant term disappears by differentiating. We set
aop = 0 in the above proof.

ii) One of the assumptions ‘|| = ||’ may be rewritten as
‘a+p8=0’

By the way, the following is known (See e.g. [1, 9, 11] and
see [10] for more developed relationships between 4th-degree
functions and their tangents). That is, suppose that the 4th-
degree function h has two inflection points and satisfies the
special condition for coefficients. Then, h — ¢ has a vertical
axis of symmetry where / is the straight line connecting two
inflection points. Hence, we gain the following easy result for
4th degree.

Proposition 4.1. Let h be a 4th-degree function

(a#0)

which has two inflection points P, Q. Suppose that 36 —8ac >
0. If P and Q are zero points « and 3 of h respectively, then

h(z) = ax® +bx® + ca® + dx + e

Wio) _
W (B)

Example 4.1 (Function with inflection points that are not
zero points, I). Consider the function

hi(z) = (& = 1)(z + 1)(z — V5)(z + V5).

Since

R (x) =(x + 1)(z — V5)(x + V5) + (. — 1)(z — V5)(z + V5)
(2 = 1)@+ 1)@ +VB) + (z — 1)z + 1)(x — v5) 2

and
RY(z) =12(x — 1)(z + 1),

h1 has all inflection points as the zero points. Then, we have
W (=V5) = —8v5, i (V5) =8V5

for the maximum and minimum zero points +/5 of hy.

However,
ho(z) = (z — Da(z +1)2

is not like that. Indeed,
hy(z) =z(z 4 2)%* + (z — 1)(xz + 1)? 4+ 2(z — Dz(z + 1),
hYy(x) =122% 4+ 10z + 1

imply that
[ho(=1)] =1 #9 = [h5(1)]

for the minimum and maximum zero points 1 of hs.
Example 4.2 (Function with inflection points that are not
zero points, II). Consider the function

h(z) = z(x —1)(2* + 2 - 5).

B (z) =(z—1) (ac — _1_2\/i> (a? — _14_2\/ﬁ>

-1-+21 -1++21
L A S

+z(x—1) (x—_l—;\/ﬁ>
+z(x—1) (m— _1_2\/ﬁ>

and
' (z) =12(x — 1)(z + 1),

of the two inflection points, only 1 is the zero point. Hence,
we have
|1 ()] # W (B)]

easily for minimum and maximum zero points («,3) =
((-1—=+21)/2,(=14++/21)/2) of h.

Example 4.3 (nth-degree algebraic function h which has
n — 2 inflection points and not all inflection points are zero
points). Consider the function

hiz) = (x —2)(x — 1)(z + 1)(z + 3).
This h has two inflection points that is not zero points:

B (z) =(x — 1)(z + 1)(z + 3) + (z — 2)(z + 1)(z + 3)
+x-2)(z—-D(z+3)+(x—2)(x—1)(x+1)

R (x) = 2(62% + 3z — 7).
‘We can now obtain
|W/(=3)] =40 # 15 = |[W/(2)],

since the maximum and minimum zero points of h are 2 and
—3 respectively.
Whereas, we can also obtain the following result for general
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degrees.
Theorem 4.3. Let n > 3 and h be an nth-degree algebraic
function. We suppose that h has the real zero points
a, a+k, ..., at(n-1«k 4
for any k € R. We write 3 for the maximum zero point of h:
B8 = a+ (n — 1)k. The slopes of two tangent lines at zero
points «, 3 of h satisfy

proof. Let
h(z) = [[ (= - ay)
j=1
be an nth-degree algebraic function where
aj=a+n—jr ((=1,...,n)

are real zero points of h. One has

S (@ —ay)
P

W (z) =
(z) 2 e
We obtain
n n—1
W(a)=[J(e—a;) =[] (~ir) = (~1)" """ (n—1)!
=2 j=1
and

W8 = [T )= K" (n = 1)
since
B—a=(a+(n—1k)—(a+(l—-1k)=(n—-0k

foralll =1,...,n. Hence, this completes the proof.

The assumed (4) is important for Theorem 4.3 to hold. This
can be seen in the following example.

Example 4.4 (Function which has non-equally spaced zero
points). Consider two functions

Then, h, has four equally spaced zero points —3, —1, 1, 3.
Since

Ri(z) =(x — 1)(z+ 1)(z +3) + (z — 3)(z + 1)(z + 3)
+(@x-3)z—1(z+3)+(x-3)(xz—1)(z+1),

we have

hi(=3) = —48, h)(3) = 48.

On the other hand, hy has non-equally spaced zero points

—2,—1,1, 3, and since

B (z)=(x —1)(z+1)(z+2)+ (z — 3)(z + 1)(z + 2)
+(@=3)(z—-1)(z+2)+ (x—=3)(z - 1)(z+1),

we have
|hy(=2)] = 15 # 40 = |hy(3)].

Finally, we mention the relationship between inflection
points being zero points and zero points being arranged at
equal intervals. To conclude first, there is no reciprocity
between these in general. Let us confirm that through
counterexamples.

Example 4.5. Consider the function

h(z) = z* — 622 — x + 5.

Since it is rewritten as

h(z) = (z—1)(z+1) (a: - Mﬁ) (a:

2 2

14 \/21>
- T 5 )
h is the function whose zero points are not evenly spaced. On
the other hand, inflection points of & are zero points of it, since

' (x) =12(x — 1)(z + 1).

Hence, even if the inflection points are zero points, it does
not necessarily mean that the zero points are arranged at equal
intervals.

Example 4.6. Consider the function

h(z) = (z —2)(x — D)az(x + 1)
with zero points evenly spaced. Since
R (x) = 2(62* — 62 — 1),

none of the inflection points of h are not zero points. Hence,
even if the zero points are arranged at equal intervals, it does
not necessarily mean that the inflection points are zero points.

5. Conclusions

We have studied symmetry and asymmetry of tangent lines
at maximum and minimum zero points of an nth-degree
algebraic function (n > 2). These properties are closely
related to symmetry and asymmetry of the graph of the
function. It is important to pay attention to symmetry of the
object of discussion in mathematics. This applies not only to
mathematics, but of course to science in general. We believe
that our study in this note is part of it.

We tried to take up many examples (Examples 3.1, and
4.1-4.6) in order to grasp the core of our study in this note.
Even (resp. Odd) number-degree functions cannot obviously
have symmetry (resp. asymmetry) of the tangent lines at
minimum and maximum zero points. On the other hand, it
is not however easy to see if even (resp. odd) number-degree
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functions have asymmetry (resp. symmetry) of them. One
of answers (sufficient, or, necessary and sufficient conditions)
for this problem is Theorem 4.3. (Theorem 4.2 is also one
answer to the case of odd number-degree.) The existence of
other answers is also, of course, expected. We would like to
make that a future topic.
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