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Abstract: In its standard form, Young's inequality for products is a mathematical inequality about the product of two 

numbers and it allows us to estimate a product of two terms by a sum of the same terms raised to a power and scaled. This 

inequality, though very simple, has attracted researchers working in many fields of mathematics due to its applications. Apart 

from the above standard form, there are numerous refinements and variants of Young’s inequality in the literature. Some of 

these variants are Young’s inequality for arbitrary products, Young’s inequality for increasing functions, Young’s inequality for 

convolutions, Young’s inequality for integrals, Young’s inequality for matrices, trace version of Young’s inequality, determinant 

version of Young’s inequality, and so on. The present study examines three variants of Young’s inequality, namely the standard 

Young’s inequality, Young’s inequality for increasing functions and Young’s inequality for arbitrary products. There are various 

proofs for these three variants in the literature. For example, just like several other classical important inequalities, these 

inequalities can be deduced from Jensen’s inequality. The objective of this article is to provide a new alternative proof for each 

of them. The significance of the article lies in its attempts to open a new direction of poof so that the same approach could be 

applied to other useful inequalities. The proofs to be presented are based on the methods of multivariable optimization theory. 

Keywords: Young’s Inequality, Multivariable Extrema, Convolution, Cauchy-Schwarz Inequality, Holder’s Inequality, 

Jensen Inequality 

 

1. Introduction 

Inequalities are basic tools in the development of modern 

mathematical theories. Mathematical analysis is largely a 

systematic study and exploitation of inequalities. A large 

number of notions and theorems in mathematics are 

expressed in the language of inequalities. The definitions of 

such useful mathematical notions as limit, convexity, 

monotonicity, continuity (of a linear operator), extrema, soon 

involve inequalities. When a numerical value of a quantity or 

a formula is approximated, it is often vital to know the error 

introduced. Error estimates are expressed in terms of 

inequalities. Mathematical analysis itself is devoted to 

finding judicious approximations for integrals, infinite sums, 

solutions of differential equations, etc. 

Today, the subject of inequalities became a discipline. G, 

H. Hardy‘s essay titled “Prolegomena" can be considered as 

the start of the creation of this particular discipline. Since 

then several books [4-7, 10-12, 15, 17] and several papers 

have been published on the subject. Very often an inequality 

is deduced from another known inequality [3, 8, 9, 17]. 

Many of the classical inequalities are associated with the 

names of famous mathematicians such as Cauchy, Schwarz, 

Bunyakovsky, Young, Holder, Minkowski, Hilbert, Hardy, 

Littlewood, Polya, Jensen, Chebyshev, Hadamard, etc. The 

studies related to these classical inequalities remain an active 

field of research to date. One of the classical inequalities that 

has attracted the attention of many researchers is the 

inequality named after the English mathematician William 

Henry Young who introduced it in 1912 [18, 6]. It is called 

Young’s inequality. Young’s inequality has several variants. 

The term Young’s inequality could refer to Young’s 

inequality for products, Young’s inequality for increasing 

functions, Young’s inequality for convolutions, Young’s 

inequality for integrals, Young’s inequality for matrices and 

so on.  

In this article, the author considers the standard Young’s 

inequality, Young’s inequality for arbitrary products and 
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Young’s inequality for increasing functions. There are 

various proofs of these variants of Young’s inequality, in the 

literature. For instance, like several other classical important 

inequalities, they can be deduced from Jensen’s inequality. In 

the present article the author presents new proofs for all of 

these variants. The proofs are based on some simple 

techniques from the theory of multivariable extrema. 

The rest of this paper is organized as follows. In Section 2, 

preliminary results pertaining to Young’s inequality are 

presented. In Section 3 the main results of the author are 

given. In this section new proofs are given for the standard 

Young’s inequality, Young’s inequality for three products and 

Young’s inequality for increasing functions. The main body 

of the paper is culminated with a short section, section 4, 

which gives brief concluding remarks. 

2. Preliminaries 

 In mathematics, Young's inequality for products is a 

mathematical inequality about the product of two or more 

numbers and it allows us to estimate a product of two terms 

by a sum of the same terms raised to a power and scaled. It is 

also called the standard Young’s inequality or Young’s 

inequality for conjugate Holder exponents. Formally it can be 

stated as follows. 

Theorem 1 [The Standard Young’s Inequality]: If � and � 

are nonnegative real numbers and � and � are real numbers 

greater than 1 such that 
�
� � �

� 	 1 , then �� � �

� � ��

� . 

Equality holds if and only if �� 	 ��. 

The inequality in Theorem1 can be written equivalently as 

������ � �� � �1 � ���  where �, � � 0 and 0 � � � 1 . 

Various proofs of this inequality exist in the literature. In 

particular, it can be proved (when � � 0) by letting t: = 
 
! 

and then finding the minimum value of the single variable 

function "�#�: 	 �#� � �# � �1 � ��.  

This inequality, though very simple, has attracted 

researchers working in many fields of mathematics due to its 

applications. For instance, the most famous classical 

inequalities such as Holder’s inequality can be deduced 

easily from the standard Young’s inequality [17, 9]. In [1], 

the authors deduced Holder’s inequality from Cauchy-

Schwarz inequality.  

Generalizations and Extensions 

Young’s inequality has been generalized and extended 

along many directions [2, 14, 16, 19]. Several generalizations 

of Young inequality exist. The following inequality, called 

Young’s inequality for increasing function, is one such 

generalization.  

Theorem 2 [Young’s Inequality for Increasing functions]: 

Let f be a real-valued, continuous and strictly increasing 

function on %0, &'  with & (  0  and "�0�  	  0 . Let "�� 

denote the inverse function of ". Then, for all a )  %0, &' and 

� )  %0, "�&�', 

�� � * "�+�
�

,
� * "���+�

�

,
 

with equality if and only if � 	  "���. 

 

Figure 1. Young’s Inequality for increasing Functions. 

The standard Young’s inequality can be deduced from 

Young’s inequality for increasing functions by letting 

"�+� 	 +���. 

On the other hand, the classical Young’s inequality for two 

scalars can be generalized to the product of .  numbers as 

follows. First, we note that the standard Young’s inequality 

could be equivalently written as ������ � �� � �1 � ��� 

where �, � � 0 and 0 � � � 1. 

Theorem 3 [Young’s Inequality for product of n numbers]: 

If 0 � ��, … �0 , �� � 1 � �0 	 1 and ��, … �0 � 0, then 

∏ �3
�4 �035� ∑ �3 035� �3 

In another development T. Ando [2] extended Young’s 

inequality to matrices in 1995. 

3. Main Result 

In this section the author gives his main result, new proofs 

of the standard Young’s inequality and its generalization to 

increasing functions. 

Proof [Theorem 1]: 

 

Figure 2. Critical points of "�+, 7�: 	 8

� � 9�

� � +7  in the rectangle 

: ; %0, &' < %0, &���' lie on the curve 7 	 +���. 

Define "�+, 7�: 	 8

� � 9�

� � +7  where �+, 7� ) :  and 

: ; %0, &' < %0, &���'  is any rectangular region containing 

��, ��. It suffices to show that the minimum value of " on : 

is zero. To this end we can apply the theory of two-variable 

extrema as follows. Since "  is continuous on the compact 

region : , so it has a minimum value on R (by Weirstrass 

Theorem for existence of optima). In view of a well-known 

fact in elementary calculus the extrema exist either at a 
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critical point of " in : or at a boundary point of :. Since the 

partial derivatives "8 and "9  exist everywhere, so, at a local 

extreme point (+, 7) of " we have ∇"(+, 7) = >0,0? . This 

implies that 7 = +���. 

Thus for every critical point (+, 7) of ", we have 7 = +��� 

and the value of " at such a point is 0. Moreover, the 

minimum value of " on the boundaries of : is greater than or 

equal to zero, as shown below. 

Define 

@: =  A(+, 7): + = 0 & 0 ≤ 7 ≤ &���C 
B: =  A(+, 7): 7 = 0 & 0 ≤ + ≤ &C 

D: =  A(+, 7): + = & & 0 ≤ 7 ≤ &���C 
E: =  A(+, 7): 7 = &��� & 0 ≤ + ≤ &C 

These sets constitute the boundaries of rectangle:. Now, 

let us compute the extreme values of "(+, 7) on each of these 

sets. 

(a) For (+, 7) ∈ @ , we have + = 0.  Hence, on @ , 

"(+, 7): = "(0, 7) = 9�
� , 0 ≤ 7 ≤ &���. 

Let ℎ(7): = 9�
� , 0 ≤ 7 ≤ &���. Using elementary calculus 

we get that the minimum value of ℎ on %0, &���' is ℎ(0) = 0. 
Hence, " assumes only non-negative values on set @. 

(b) For (+, 7) ∈ G , we have 7 = 0.  Hence, on B, 

"(+, 7): = "(+, 0) = 8

� , 0 ≤ + ≤ &. 

Let H(+): = 8

� , 0 ≤ + ≤ & . The minimum value of H  on 

%0, &' is H(0) = 0. Hence, " is nonnegative on set G. 

(c) For (+, 7) ∈ D , "(+, 7): = "(&, 7) = I

� + 9�

� − &7, 0 ≤
7 ≤ &���. 

Let J(7): = I

� + 9�

� − &7, 0 ≤ 7 ≤ &���. The derivative of 

k is 0 if and only if 7 = &
K

�LK = &���, which is an end point 

of the domain of k. Hence, k has no critical point interior to 

its domain. Computing k at its endpoints gives us 

J(0) = I

�  and J(&���) = I


� + I

� − &� = 0 . Thus, the 

minimum value of J on %0, &���' is 0; hence, " assumes only 

non-negative values on set D. 
(d) For (+, 7) ∈ E , "(+, 7): = "(+, &���) = 8


� + I

� −

+&���, 0 ≤ + ≤ &. 

Define #(+): = 8

� + I


� − +&���, 0 ≤ + ≤ &. The minimum 

value of # on %0, &' is 0. Hence, " is nonnegative on set E. 

It follows from (a) to (d) that f assumes only nonnegative 

values on the boundary of rectangle R 

Thus "(+, 7) ≥ 0 on R and hence, �� ≤ �

� + ��

� . Q. E. D. 

The same approach used to prove Theorem 1 can also be 

used to prove Theorem 2 as shown next. 

Proof [Theorem 2]: 

Define M(+, 7): = N "(#)O#8
, + N "��(#)O#9

, − +7, where 

(+, 7) ∈ :  and : ≔ %0, &' × %0, "(&)'  is any rectangular 

region containing (�, �). As in the previous proof, it suffices 

to show that the minimum value of " on : is zero. The two 

variable function G is continuous on the compact region :, 

so it has a minimum value on : . The extrema of G exist 

either at a critical point of G in R or at a boundary point of R. 

Since M8 = "(+) − 7  and M9 = "��(7) − + , so ∇M(+, 7) =
>0,0? if and only if 7 = "(+). Since the partial derivatives M8 

and M9 exist everywhere in :, so the only critical points of M 

are exactly those points (+, 7) in R satisfying 7 = "(+). 

At every critical point (+, 7) , the value of M  is 0. It 

remains to compute the minimum value of " on the 

boundaries of : and make comparison with the value of G at 

critical points, which is 0. 

Define 

@: =  A(+, 7): + = 0 &0 ≤ 7 ≤ "(&)C 
B: =  A(+, 7): 7 = 0 & 0 ≤ + ≤ &C 

D: =  A(+, 7): + = & &0 ≤ 7 ≤ "(&)C 
E: =  A(+, 7): 7 = "(&) & 0 ≤ + ≤ &C 

The extreme values of M(+, 7) on each of these sets are 

computed as follows. 

(a) For (+, 7) ∈ @ , we have + = 0.  Hence, on @ , 

M(+, 7): = M(0, 7) = N "��(#)O#9
, , 0 ≤ 7 ≤ "(&).  

Let ℎ(7): = N "��(#)O#9
, , 0 ≤ 7 ≤ "(&). 

Using elementary calculus we get that the minimum value 

of ℎ  on %0, "(&)'  is ℎ(0) = 0.  Hence, M  assumes only non-

negative values on set @. 

(b) For (+, 7) ∈ G , we have 7 = 0.  Hence, on B, 

"(+, 7): = "(+, 0) = N "(#)O#8
, , 0 ≤ + ≤ &. 

Let H(+): = N "(#)O#8
, , 0 ≤ + ≤ &. The minimum value of 

H on %0, &' is H(0) = 0. Hence, M is nonnegative on set G. 

(c) For (+, 7) ∈ D , M(+, 7): = M(&, 7) = N "(#)O#I
, +

N "��(#)O#9
, − &7, 0 ≤ 7 ≤ "(&). 

Let J(7): = N "(#)O#I
, + N "��(#)O#9

, − &7, 0 ≤ 7 ≤ "(&) . 

The critical point of k is 7 = "(&). Now, 

J(0) = N "(#)O#I
,  and 

("(&)) = N "(#)O#I
, + N "��(#)O#P(I)

, − &"(&) = 0 . Thus, 

the minimum value of J on %0, "(&)' is 0; hence, M assumes 

only non-negative values on set D. 
(d) For (+, 7) ∈ E , M(+, 7): = M(+, "(&)) = N "(#)O#8

, +
N "��(#)O#P(I)

, − +"(&),0 ≤ + ≤ &. 

Define #(+): = N "(#)O#8
, + N "��(#)O#P(I)

, − +"(&),0 ≤
+ ≤ & . The minimum value of # on %0, &' is 0. Hence, M  is 

nonnegative on set E. 

It follows from (a) to (d) that G assumes only nonnegative 

values on the boundary of rectangle :.  

Thus M(+, 7) ≥ 0  on :  and from this the conclusion of 

Theorem 2 follows. Q. E. D. 

Next, the proof of Young’s inequality for the product of 

three numbers is presented. The proof uses optimization 

techniques, as in the proofs of Theorem 1 and Theorem 2. 

Whether or not such optimization techniques could be used 
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to prove Young’s inequality for the product of n numbers, for 

an arbitrary positive integer n, is left to the reader as an 

exercise. To prove Theorem 3 for . = 3, it suffices to prove 

the following restatement. 

Restatement of Theorem 3 for the product of three numbers: 

If �, � and & are nonnegative real numbers and �, � and R are 

real numbers greater than 1 such that 
�
� + �

� + �
S = 1 , then 

��& ≤ �

� + ��

� + IT
S . 

Proof [Theorem 3 for n=3]: 

Let  

:: =  %0, O' × U0, O


�V × %0, O


T'  
be any rectangular box containing (�, �, &). 

Define 

"(+, 7, W) ≔ +�

� + 7�

� + WS

R − +7W, (+, 7, W) ∈ : 

It suffices to show that the minimum value of "  on : is 

zero.  

Step 1: We show that the value of " at its critical points is 

nonnegative. Let (+, 7, W)  be a critical point of " . 

Then∇"(+, 7, W) = >0,0,0?. This implies +7W = +� = 7� = WS . 

At every critical point (+, 7, W) of " we get that 

"(+, 7, W) ≔ 8

� + 9�

� + XT
S − +7W = +7W Y�

� + �
� + �

SZ −
+7W = 0, Thus " is zero at every critical pint (+, 7, W). 

Step 2: We show that the value of "  at every boundary 

point of :  is nonnegative. Let the six faces that form the 

boundary surface of R be labeled as follows: 

@: =  [(+, 7, W): + = 0, 0 ≤ y ≤ d


� &0 ≤ W ≤ O


T]  

B: =  ^(+, 7, W): 0 ≤ + ≤ O, y = 0 &0 ≤ W ≤ O

T_ 

D ≔  [(+, 7, W): 0 ≤ + ≤ O, 0 ≤ y ≤ d
�
�  &z = 0] 

E: =  [(+, 7, W): + = d, 0 ≤ y ≤ d
�
�  &0 ≤ W ≤ O�

S ] 

F: =  [(+, 7, W): 0 ≤ + ≤ O, y = d


� &0 ≤ W ≤ O


T] 

M ≔  [(+, 7, W): 0 ≤ + ≤ O, 0 ≤ y ≤ d
�
�  &z = O�

S ] 

Clearly, if (+, 7, W) lies in A, B or D, then"(+, 7, W) = 0. 

It remains to find the minima of " on the remaining three 

faces of R (i.e., E, a and M). 

If (x, y, z)∈ E, then + = O and we get that 

"(+, 7, W) ≔ "(O, 7, W) = b

� + 9�

� + XT
S − O7W  

Define  

ℎ(7, W) ≔ "(O, 7, W) =  b

� + 9�

� + XT
S − O7W;  

0 ≤ y ≤ d


� &0 ≤ W ≤ O


T . 

If (7, W) is a critical point of ℎ, then O7W = 7� = WS  and 

h(y, z) =
b

� + b9X

� + b9X
S − O7W = b


� − 9�
� ≥ 0. Hence, " is 

nonnegative at every critical point of h in E. On the other 

hand, it can be checked easily that the values of ℎ (and 

hence ") on the boundaries of E are nonnegative, too. Thus " 

is nonnegative on E. 

As the reader can easily verify " is also nonnegative on the 

remaining two faces of :. Q. E. D. 

4. Conclusion 

This mini article never aims at providing easier proofs for 

the three forms of Young’s inequality it considers; because 

simple proofs of these inequalities are abound in literature. 

Rather, it attempts to open a new direction of poof so that the 

same approach could be applied to other useful inequalities. 

Specially, the technique of proof used in the article could be 

applied to Young’s inequality for arbitrary products. 
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