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Abstract: In this work, a partial proof of Fermat’s Last Theorem (FLT) relying on elementary number theory is presented. 

The main result asserts that when certain natural assumptions are placed on the variables involved in the equation of the 

statement of FLT, then FLT holds for any prime number greater than 9, and consequently for any positive integer greater than 9. 

The proof of the main and supporting results is by the method of contradiction. It is first proved that if there is a prime number 

greater than 9 for which FLT is false under a natural assumption on the variables of the equation of FLT, then there is a set of 

equations that the variables must satisfy. From this set of equations, it is proved that the variables of the equation of FLT are 

further constrained by an additional set of equations and inequalities, which ultimately results in a contradiction. The 

elementary number theoretic methods employed are centered around the theory of greatest common divisors, the binomial 

theorem, the theory of indices, and the theory of polynomials over the ring of all integers. The algebraic operations involved 

are those defined on the ring of all integers, and those defined on the field of all rational numbers. The elementary order 

properties of the set of integers as a subset of the totally ordered field of real numbers are also applied. The cancellation and 

unique prime power factorization properties of the integers are taken for granted. 
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1. Introduction 

Fermat’s Last Theorem (FLT) is the statement that the 

equation 

�� � �� � ��               (1) 

has no non-trivial integer solutions for any positive integer � 

greater than 2. It was first stated in 1637 by French 

mathematician Pierre de Fermat and was proved by British 

mathematician Andrew Wiles (see [14, 17]) using advanced 

and relatively modern number theoretic techniques. Before 

Wiles’ proof, various authors including some prominent 

mathematicians proved FLT for some specific values or 

classes of �.	Fermat himself proved FLT for the cases � � 3 

and � � 4,	after developing and applying a technique known 

as the method of infinite descent, which is a form of proof by 

contradiction where one assumes that if a statement is true for 

a given number, then it would be true for a smaller number, 

which would lead to an infinite descent and ultimately lead to 

a contradiction. 

In 1770, Euler also proved FLT for � � 3	and � � 4 by 

different methods, although the proof for � � 3	had a gap. 

Euler’s methods were adopted by other mathematicians, who 

corrected Euler’s proof for � � 3 and applied them in other 

problems. Sophie Germain in 1823 proved FLT for � � 5, 

and in 1825, Dirichilet and Lagrange also proved it for � � 5 

by different techniques. In 1839, Lame` established FLT for 

the case � � 7. 

Another important breakthrough came in 1847 when 

Kummer proved FLT for a class of prime numbers known as 

the regular primes. Following Kummer’s work, FLT was 

known to hold for odd primes below100, except 37, 59 and 67. 

Further work from various authors proved FLT for the cases 

� � 6, 8, 9, 10 and 14. Another milestone came in 1983 when 

Germany mathematician Gerd Faltings proved a result in 

arithmetic geometry, one of whose consequences is that 

Equation (1) has at most finitely many pairwise coprime 

solutions for any fixed � � 4.  

The proofs of FLT for specific values of �	are adhoc in 

nature and cannot be generalized to arbitrary �.	 For a 

complete historical account of FLT, the reader is referred to [9, 

13]. 

Wiles’ proof of FLT relies mainly on modularity theory and 
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the theory of elliptic curves. Since the publication of the proof 

in 1995, there have been great developments in modularity 

theory and the theory of elliptic curves (see for instance [3, 8, 

10, 11, 15, 18]).  

In this work, elementary number theory will be used to 

establish a result that describes conditions under which 

Equation (1) does not hold for any odd integer � greater than 

9. The result does not establish a new proof of FLT but only 

asserts that Equation (1) does not hold for any odd integer 

� > 9 when certain natural assumptions are placed on �, � 

and �.	Although Equation (1) is stated in terms of non-zero 

integers in general, it is well known and can easily be verified 

that it is enough to consider it only for positive integers. In 

addition, it will suffice to prove our main result only for prime 

values of �  since if �  is not prime, Equation (1) can be 

re-arranged and written in terms of a prime exponent and 

powers of the original integers �, � and �. Some of the ideas 

employed in the proofs of results find their inspiration in the 

works [1, 2, 4-7, 12, 16]. 

2. Materials and Methods 

The results in this work will involve statements about 

positive integers in relation to FLT. Then proofs of these 

statements will be established by standard elementary number 

theoretic techniques. 

3. Results 

The main result of this section is Theorem 3.4, which 

establishes that Equation (1) does not hold under certain 

assumptions on �, �  and �  for any odd integer 	� > 9. To 

prove it, the next three lemmas will be needed. 

Lemma 3.1 

If there are positive integers �, � and � such that � = � −
� does not divide y and �� = �� + ��  holds for any prime 

positive integer 	� > 9 , then there are positive integers � 

and	�, which are relatively prime and satisfy the equations 

� = (�/�)�, � = ��  and � = �� for some positive integer 

�. 
Proof. Suppose that positive integers �, � and � exist such 

that �� = �� + �� holds for an odd positive integer	� > 9, 

and satisfying the hypotheses above. Assume without loss of 

generality that �, �  and �  are in their lowest terms. Now, 

since Equation (1) holds, it is clear that � > � and so	� = � −
� > 0. Equation (1) may then be written as 

�� = �� + ������ +⋯+ ������ + ��, 

which when compared with Equation (1) yields that 

�� = ������ + !�"#�"���"…+ ����� + �� ,	    (2) 

so that � and � have a common factor. Since � does not 

divide � by hypothesis, there are positive integers � and � 

that have no common factor and satisfy the relations	� > �, 

� > � and  

� = (�/�)�.                 (3) 

Since, obviously, � divides	�, there is a positive integer � 
such that	� = ��. It follows from Equation (3) that	� = ��, 

which together with � = �� imply that Equation (2) may be 

written as 

���� = �(��)���� + (�(� − 1) 2⁄ )(��)"���" +⋯+
�(��)���� + (��)�.        (4) 

First, suppose that �  does not divide� . Then the first 

possibility is that � has a factor ' that has no common factor 

with 	� . If '  does not divide ����� , then Equation (4) is 

inconsistent since dividing both sides of the equation by the 

highest power of ' in � leaves the left hand side divisible by 

' while the right hand side is not. Therefore ' must divide 

�����  and if '  and ����  have a common factor, then � 

and � will have a common factor. This will lead to �, � and 

� having a common factor, contradicting the fact that they are 

in their lowest terms. Therefore ' and � have no common 

factor, and so ' must divide	�. This means that '( divides 

the second term (�(� − 1)/2)(��)"���" in the sum on the 

right hand side of Equation (4). This in turn implies that 

'"	divides	� , which contradicts the fact that �  is a prime 

number. 

Now consider the second possibility for � not dividing	�, 

which is that � has a factor ) that occurs with a higher power 

in � than in	�. If ) does not divide �����  as before, it is 

deduced that Equation (4) is inconsistent as dividing both 

sides by the highest power of ) in �� leaves the left hand 

side divisible by ) while the right hand side is not. Therefore 

) must divide	�����, and then as before, )" will divide	�, 

contradicting the fact that � is prime. Since both cases fail 

when �  does not divide 	� , it is concluded that �  must 

divide	�. 

Let �*  be the highest power of �  in 	� . If 	+ ≥ � , then 

Equation (4) is inconsistent as dividing both sides by �� will 

leave the right hand side divisible by � while the left hand 

side is not. Similarly, if	� > + + 1, then again Equation (4) is 

inconsistent as dividing both sides by �*,� will leave leave 

the left hand side divisible by � while the right hand side is 

not. Now suppose that � = + + 1 and let � /
 be a positive 

integer such that	� = �*�/. If	�/ > 1, because � and � are 

relatively prime, Equation (4) is inconsistent since dividing 

both sides by �� = �*,�  will leave the right hand side 

divisible by �/	while the left hand side is not. It follows 

that	�/ = 1, so that	� = �* = ����, which leads to	� = �� =
��. 

Lemma 3.2 

If there are positive integers �, � and � such that � = � −
�  does not divide � , - = � − � = 1  and �� = �� + �� 

holds for any prime � > 9, then there are positive integers 

., / and 0 such that � + � = ./, � = .0, and / < .���. 
Proof. Assume that there are positive integers �, � and � 

such that the hypotheses above are satisfied. As before, it is 

assumed without loss of generality that �, �, �  are in their 

lowest terms, and that	� > �. Note also that	� = � + � = � +
1. Now, since � is odd, �� = �� + �� can be written as 
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�� � (� � �)(���� − ���"� � ⋯− ����" � ����), 

which implies that � � �  divides 	�� , and so if .  is the 

greatest common divisor of � � � and	�, then	. > 1. Let / 

and 0  be positive integers such that � + � = ./  and 

� = .0 . It follows from � = � + � = � + 1  that 	� + 1 =
2� − (� + �), and because . divides � + � and	�, it divides 

� + 1 . Then � − 1 = � − � = � − (� + 1)  yields that . 

divides � − 1 and � − �. Since . also divides � + 1, there 

are positive integers 21 and 22 such that � + 1 = .21 and 

� − 1 = � − � = .22. Therefore	.21 + .22 = � + 1 + � −
1 = � + � = � , and comparing with� = .0 , it is deduced 

that 	0 = 21 + 22 . In addition, ./ = � + � = � + � − - =
.0 + .22 yields that	/ = 21 + 222 = 0 + 22.	

Now, by Lemma 3.1, there are relatively prime positive 

integers	�, �, and an integer	�, such that � = �� and � = ��. 

It follows from � − � = � − 1 = .22 that 

� − � = � − 1 = (� − �)� = .22.      (5) 

If . and � have a common factor, then � and � will have 

a common factor, which contradicts the fact that �, �, � are 

relatively prime. Therefore . must divide	� − �, and so there 

a positive integer 3  such that 	� − � = .3 . It follows from 

Equation (5) that 

22 = �3                  (6) 

Now, writing � + � = ./ as � = ./ − � and taking �45 

powers on both sides leads to the equation 

�� = (./)� − �(./)���� + ⋯+ �(./)���� − ��, 

which on rearrangement and in the light of �� = �� + ��  and 

� = .0 becomes 

.���0� = /((./)��� − �(./)��"� + ⋯+ �����).   (7) 

If / and 0 have a common factor, then � + � and � will 

have another common factor other than., which contradicts 

the fact that . is their greatest common divisor. Therefore, / 

and 0 have no common factor, and so Equation (7) implies 

that / divides	.��� . Suppose that	/ = .��� . Then	� + � =
./ = .� , and since � = ��	 by Lemma 3.1, the equation 

2� = � + � + � + 1  assumes the form 	2� = .� + �� + 1 . 

From 	� = �� , � = .0  and 	� = � + 1 , it follows that 	.0 +
�� = .� + ��. Since � is odd, this may be written as 

.0 + �� = (. + �)(.��� − .��"� + ⋯− .���" + ����) =
(. + �)6,         (8) 

where	6 = (.��� − .��"� + ⋯− .���" + ����). It is easy 

to deduce from Equation (8) that 

.(6 − 0) = �(� − 6).          (9) 

Note from 2� = .� + �� + 1  that 	. > � . To see this, 

suppose that 	. ≤ � . Then 	2� < 2�� + 1 = 2� + 1 , and so 

� = � + � yields that	� < 1/2, which is not possible. Next, it 

is shown that	� > 0. Suppose to the contrary that	� ≤ 0. The 

case � = 0	is ruled out as it would mean that � and � have a 

common factor. For the case	� < 0, first observe that there are 

positive integers �1 and �1 such that . = � + �1 and	0 =
� + �1,  so that � = .0 = �� + ��1 + ��1 + �1�1 = � +
��1 + ��1 + �1�1. This is inconsistent with	� = � + 1, and 

so the inequality � > 0 is established. Next, it is shown that 

0 < 6 < �. If 0 = 6 or	6 = �, Equation (9) yields that	0 =
�, which is not possible as it would mean that � and � have a 

common factor. If 	0 > 6 , then 	� > 0 > 6 , which makes 

Equation (9) inconsistent as the left hand side is negative 

while the right hand side is positive. Similarly, if	6 > �, then 

6 > � > 0 and again Equation (9) is inconsistent. Thus,	0 <
6 < �. 

Now, since	6 > 0, there are positive integers 01 and 61 

such that 	6 = 061 + 01, where 	0 > 01 . Then Equation (9) 

becomes .(061 + 01 − 0) = �(� − 061 − 01) , which on 

rearrangement assumes the form	.0(61 − 1) + (. + �)01 +
0�61 = ��. From � = �� and	� = .0, it follows that	�(61 −
1) + (. + �)01 + 0�61 = � , and so if 61 > 1 then 	� > � . 

Since this is not possible, it follows that	61 = 1, so that	6 =
0 + 01. This and Equation (9) yield that 

(�� + .0)/(. + �) = (� + �)/(. + �). 
It follows from 6 = 0 + 01 that	0 + 01 = (� + �)(. + �), 

that is,	.0 + .01 + 0� + �01 = � + �. Because	.0 = �, this 

becomes 	.01 + 0� + �01 = � = �� , which implies that � 
divides	.01. Since . and � cannot have a common factor as 

this would mean that � and � have a common factor, this 

implies that � divides	01. Let �1 be a positive integer such 

that	01 = ��1. It follows from 6 = 0 + 01 that	6 = 0 + ��1. 

Equation (9) then leads to 

� = 6 + .�1 = 0 + .�1 + ��1.       (10) 

Multiplying both sides of Equation (10) by � and using 

� = �� yields that	� = 0� + .��1 + �"�1. Multiplying both 

sides of Equation (10) by .  and using � = .0 = � + 1 

produces .� = � + ."�1 + .��1 + 1 . Since 	� = 0� +
.��1 + �"�1 , the latter equation becomes 	.� = 0� +
2.��1 + ."�1 + �"�1 + 1 . Substituting 6 − ��1  for 0 , it 

follows that 

.� = �6 + 2.��1 + ."�1 + 1.          (11) 

Multiplying both sides of Equation (10) by 	0  leads 

to	0� = 0" + .0�1 + 0��1. Using Equation (11), the variable 

�  can be substituted for the expression �6/. + 2��1 +
.�1 + 	1/. in the latter equation, to obtain that 

0(�6/. + 2��1 + .�1 + 	1/.) = 0" + .0�1 + 0��1, 

which on rearrangement and simplification leads to	�6 + 1 =
.(0 − ��1). Taking	6 = 0 + ��1, this equation assumes the 

form 	(. − �)0 = ��1(. + �) + 1 . From this and the 

equations 	0 = 21 + 22 , 22 = �3  and 	� + 1 = .21 , it 

follows that 	�((. + �)�1 − (. − �)3 + 21) = � . The 

equation � = ��  then yields that � = (. + �)�1 − (. −
�)3 + 21 , which from 22 = �3  and 0 = 21 + 22 

becomes	� = (. + �)�1 + 0 − .. Therefore 

6 − � = 0 + ��1 − ((. + �)�1 + 0 − .) = .(1 − �1). (12) 
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Now, as was noted before, Equation (9) can be written 

as 	(. � �)6 � 2� � 1 . In view of 	� = � + 1 , � = � + � 

and� + � = ./ , it follows that 	(. + �)6 = ./ + � , which 

from � = ��  can rearranged as .(/ − 6) = �(6 − �) . 

If 	�1 > 1 , Equation (12) means that 	� > 6 , and then 

.(/ − 6) = �(6 − �) implies that 	6 > / . Therefore	� > / , 

which is not possible since	. > �, / = .���	and	� = ���� . 

If	�1 = 1, then Equation (12) and .(/ − 6) = �(6 − �) will 

yield that 	/ = 6 = � . Since �  divides �  and 	� , from the 

equation � + � = ./ it is deduced that � divides	�, and so � 

and �  will have a common factor, which leads to a 

contradiction. It is therefore concluded that the case / = .��� 
does not hold, and since / divides	.���, then	/ < .���. 

Lemma 3.3 

If there are positive integers �, � and � such that � = � −
�  does not divide � , - = � − � = 1  and �� = �� + �� 

holds for any prime � > 9, then there are positive integers 

., / and 0 such that � + � = ./, � = .0, and .��" < /. 

Proof. Suppose that �, �  and �  are positive integers 

satisfying the hypotheses above. As before assume without 

loss of generality that �, � and � are in their lowest terms and 

that 	� > � . By replicating the arguments in the proof of 

Lemma 3.2, it is obtained that there are positive integers 

., /, 0, 21, 22  such that 	� + � = ./ , 	� = .0 , 	0 = 21 +
22,/ = 0 + 22,	� + 1 = .21,	� − 1 = .22 and 

.���0� = /((./)��� − �(./)��"� + ⋯+ �����) (*). 

Suppose that / ≤ .��" . Since /  divides .���  as was 

deduced in the proof of Lemma 3.2, the inequality / ≤ .��" 
and the Equation (*) yield that . and ����� have a common 

factor. Because . and ���� cannot have a common factor as 

�, � and � are in their lowest terms, it follows that . and � 

have a common factor. Since � is prime, the common factor 

is �  itself. Now, note from the equation .�0� = ��  = 

�� + �� = (� + �)(���� − ���"� + ⋯− ����" + ����) = 

./(���� − ���"� +⋯− ����" + ����)  that .  and 0  are 

both factors of the sum in the braces, which means that � 
divides the sum. If � is odd, then � = � + 1	is even and � is 

odd, and the sum in the braces is odd as it will be a sum of an 

odd number of odd terms, in which case � cannot divide the 

sum. Thus y must be even, so that z is odd, and so ., /, 0, � 

are odd while �, �, �  are even. From 	� − 1 = .22 , it is 

deduced that 22 is even and from � + 1 = .21 that 21 is 

odd. 

Now, because � is prime, it divides every term in the sum 

∑ !�9#�
9:;  apart from the first and last one. Since the first and 

last terms are both 1 and	∑ !�9#�
9:; = 2�, this implies that � 

divides 	2� − 2 . Writing 	2� − 2 = 2(2��� − 1) , it follows 

that n divides	2��� − 1, and so there is a positive integer < 

such that 	2��� − 1 = <� . Since �  is even and � = ��  by 

Lemma 3.2, we can write � = 2�' = (2� − 2 + 2)' =
(2� − 2)' + 2', for some positive integer	'. Adding 1 on 

both sides of this equation leads to the equation 

� + 1 = (2� − 2)' + 2' + 1.        (13) 

Since � divides	., the equation � + 1 = .21 means that 

� divides � + 1 and since � also divides	2� − 2, Equation 

(13) implies that � divides 2' + 1 and so 

2' + 1 = 6�               (14) 

for some positive integer g. From	/ = 0 + 22 = 21 + 222, 

we get that ./ = .21 + 2.22  and then � + 1 = .21 

gives	./ = 2.22 + � + 1. Using� = 2�', the latter equation 

becomes 2.22 + 2�' + 1 = ./  and because �  divides 	. , 

this implies that � divides	2�' + 1. Let ℎ be the positive 

integer such that 

2�' + 1 = ℎ�.              (15) 

If	' = 1, then Equation (15) establishes that n divides	2� +
1, and since it also divides 	2� − 2, this will mean that n 

divides 3. However, this is not possible since 	� > 9 . 

Therefore	' > 1, and so from	� = �� = 2�', there must be a 

positive integer > > 1 such that	' = >� . This implies that 

' > 2��� − 1  and so it follows from 2��� − 1 = <�  and 

Equations (14) and (15) that 6 > < and	ℎ > <. It follows that 

there exist integers <1, <2, ?1, ?2 with	< > <1, <2, such that 

ℎ = <?1 + <1  and 	6 = <?2 + <2 . Then 	ℎ − 6 = (?1 −
?2)< + <1 − <2, so that <6� = < − 6 + ℎ yields that	(6� −
1)< = (?1 − ?2)< + <1 − <2,  or (6� + ?2 − ?1 − 1)< =
<1 − <2. Since	< > <1 − <2,	this implies that <1 − <2 = 0 

and 	6� + ?2 − ?1 − 1 = 0 . Making ?1  the subject of the 

formula and using Equation (14) yields that	?1 = 2' + ?2. 

Together with <1 = <2 and	6 = <?2 + <2, this implies that 

ℎ = <?1 + <1 = (2' + ?2)< + <1 = 2'< + 6.   (16) 

Now, from	<1 = <2, ℎ = <?1 + <1 and6 = <?2 + <2, it is 

established that	ℎ − 6 = (?1 − ?2)<, or	ℎ = (?1 − ?2)< + 6. 

Comparing with Equation (16), this yields that	?1 − ?2 = 2'. 

Adding 1 on both sides and using the fact that	2' + 1 = 6�, 

it follows that 	?1 − ?2 + 1 = 6� . Using 6 = <?2 + <1  and 

rearranging, it is obtained that	?1 = (�< + 1)?2 + �<1. Then 

2��� = �< + 1 implies that 	?1 = 2���?2 + �<1 , so that 

ℎ = ?1< + <2  produces ℎ = (2���?2 + �<1)< + <1 =
2���?2< + �<<1 + <1 = 2���?2< + (�< + 1)<1 =
2���(<?2 + <1) = 2���6. 

This means that 6  divides ℎ , and then Equation (16) 

establishes that 6 divides	2'<. Since 6 divides	2' + 1, this 

means that 6 and 2' cannot have a common factor, and so 

6  must divide 	< . However, this contradicts the fact that 

6 > <, .�2  it is therefore concluded that the inequality 

/ ≤ 	.��" does not hold. Hence	.��" < /. 

Having proved Lemmas 3.1, 3.2 and 3.3, the main result of 

the paper will now be established, which asserts that the 

equation �� = �� + ��  does not hold when �, �  and � 
satisfy the conditions of Lemma 3.1, 3.2 and 3.3. 

Theorem 3.4 

There are no positive integers �, �  and �  such that 

� = � − � does not divide	�, - = � − � = 1 and �� = �� +
�� holds for any prime	� > 9. 

Proof. Assume that �, � and � are positive integers such 

that the hypotheses above are satisfied, �, �, �  are in their 

lowest terms and without loss of generality	� > �. By Lemma 

3.1, 3.2 and 3.3, there are positive integers ., /, 0  such 
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that 	� � � � ./ , � � .0  and 	.��" < / < .��� . If /  has a 

factor that is relatively prime to	., then the equation 

.�0� � ./(���� − ���"� � ⋯− ����" � ����) 

implies that /  and 0  have a common factor, which 

contradicts the fact that . is the greatest common divisor of 

� � � and�. Therefore / has no factor that is relatively prime 

to	.. 

First consider the case where .��" does not divide	/. Then 

either .��" has a factor that is relatively prime to / or .��" 

has a factor that occurs with a higher power in .��" than in	/. 

For the first case, since no factor of / is relatively prime to	., 

there are factors .1 and .2 of . such that	. = .1.2, .1 is 

relatively prime to /  and / = (.2)@	 for some positive 

integer	A > 1. The equation 

.�0� =
./((./)��� + �(./)��"� + ⋯+ (�(� − 1) 2⁄ )(./)���" +

�����)         (17) 

then becomes 

(.1.2)���0� = (.2)@((./)��� + �(./)��"� + ⋯+
(�(� − 1) 2⁄ )(./)���" + �����), 

which means that .1 divides�����. Since .1 and � cannot 

have a common factor, it means that .1 divides	�, and since 

� is a prime, the latter equation yields that (.1)"	divides the 

second last term	(�(� − 1) 2⁄ )./���". It follows that (.1)" 
divides	�, which contradicts the fact that � is prime. For the 

second case, if .∗  is a factor of .��"  that occurs with a 

higher power in .��" than in	/, then Equation (17) will yield 

that (.∗)" divides �, again contradicting the fact that � is 

prime. 

Now consider the case where .��"  divides 	/ . Then 

/ = .��".1 for some positive integer.1, and since / divides 

.���,  this means that .1  is a factor of 	. . Let .2  be the 

positive integer such	. = .1.2. It will be shown that	.2 = �. 
The equations .�0� = (./)� + �(./)���� + ⋯+
(�(� − 1) 2⁄ )(./)"���" + �(./)����  and / = .��".1 

yield that 

.�0� = (.���.1)� + �(.���.1)���� + ⋯+ (�(� −
1))2)(.���.1)^2���" + �(.���.1)����.    (18) 

Since the left hand side of the equation is divisible by .�, 

so is the right hand. In particular, .� divides the last term of 

the sum on the right, and since .  and �  cannot have a 

common factor, this implies that	. = (.1)�. From	. = .1.2, 

it follows that	.2 = �, and so if both sides of Equation (18) 

are divided by	.� , it is obtained that . divides	0� − ���� . 

Since �  divides 	. , this means that �  divides 	0� − ���� . 

Writing 0� − ���� = 0� − ���� + 1 − 1 and using the fact 

that .  divides 	� − 1 , it is deduced that �  divides 	0� − 1 . 

Since � divides � − 1, � + 1 and� + 1, adding each of these 

quantities to 	0� − 1  yields that �  divides 	0� + � − 2 , 

0� + �  and 0� + � . Let >1, >2, >3  and >4  be positive 

integers such that 0� − 1 = (>1)� , 0� + � − 2 = (>2)� , 

0� + � = (>3)�  and 	0� + � = (>4)� . Note that � = � +
1 = 0� + � − (0� − 1) = (>4 − >1)�  and � = � + � =

(>2 + >3)� + 2 − 20� = (>2 + >3 − 2>1)�, from which it 

follows that	
>4 = >2 + >3 − >1.             (19) 

It is also easy to check that � + 1 = (>3 − >1)� = .21 

and	� − 1 = (>2 − >1)� = .22, from which it follows that 

(>2 − >1)21 = (>3 − >1)22.	        (20) 

Equations (19) and (20) then yield that 	(>4 − >3)21 =
(>3 − >1)22 , which may be written as 	(>4 − >3)21 =
(>3 − >1 + >4 − >4)22 = (>3 − >4)22 + (>4 − >1).  

Using	0 = 21 + 22, the latter equation can be rearranged as 

(>4 − >3)0 = (>4 − >1)22. Multiplying both sides of this 

equation by . and using .0 = � = � + 1 and	.22 = � − � 

produces (>4 − >3)� + >4 − >3 = (� − �)(>4 − >1) . 

Collecting like terms, this becomes (>3 − >1)� = (>4 −
>1)� + >4 − >1 . Writing this equation as (>3 − >1)� =
(>4 − >1)� + >4 − >3 + >3 − >1  and then rearranging 

leads to the equation	(>3 − >1)(� + 1) = (>4 − >1)(� + 1). 
It follows from � + 1 = � = � + � that	(>3 − >1)(� + �) =
(>4 − >1)(� + 1) , and the latter equation may be written 

as 	(>4 − >3)(� + 1) = (>3 − >1)(� − 1) . In the light of 

Equation (19), this becomes (>4 − >3)(� + 1) = (>4 −
>2)(� − 1), which may be written as 

>1 + (>2)� + (>4)(� + 1) = (>3)� + (>4)�.     (21) 

Now, from 0� + � = (>4)�  and 	� + 1 = (>3 − >1)� , 

Equation (21) may be written as 	>1 + (>2)� + (>3 −
>1)(0� + �) = (>3)� + (>4)�,  which on rearrangement 

becomes (0� + � − 1)>1 + (>4 − >2)� = (0� + � − �)>3 . 

Since >4 − >2 = >3 − >1  by Equation (19), it follows 

that 	(0� + � − � − 1)>1 = (0� + � − � − �)>3 , or 

(>3 − >1)(0� + � − �) = >3� − >1. The latter equation may 

be written as	(>3 − >1)(0� + � − �) = (>3)� − >1 − >3 +
>3 , which becomes (>3 − >1)(0� + � − � − 1) = (� −
1)>3. Writing this equation as (>3 − >1)(0� + � − � − 1) =
(� + 1 − 2)>3 = (� + 1)>3 − 2(>3)  and using � + 1 =
(>3 − >1)�  yields that (>3 − >1)((>3)� + � − 0� − � +
1) = 2(>3) . Since � = (>3)� − 0�  and 	� − � = � − 1 , it 

follows that 2(>3 − >1) = 2(>3) , that is, 	>3 − >1 = >3 . 

This means that 	>1 = 0 , and so 	0 = 1 , which leads to a 

contradiction. It is therefore concluded that the case where 

.��" divides / fails, and since the case where .��" does not 

divide / also fails, the result is proved. 

Corollary 3.5 

There are no positive integers �, �, � such that � = � − � 

does not divide	�, - = � − � = 1 and �� = �� + ��  holds 

for any positive integer	� > 9. 

Proof. By Theorem 3.4, there are no positive integers �, � 

and � such that �� = �� + ��  holds for any prime � > 9, 
and hence for any positive odd integer	� > 9. Now suppose 

that � > 9 is even and that �� = �� + �� holds. If � has an 

odd factor 	A , then 	� = 2*A , for a positive integer 	+ ≥ 1 . 

Then �� = �� + ��  becomes D�"EF
@
= D�"EF

@
+ D�"EF

@
, 

which does not hold because A is odd and �"E , �"E , �"Eare 

positive integers. If � has no odd factor, then it can be written 
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as	� � 2G, where	H > 3. Then equation �� = �� + �� is then 

written as D�"EF
I
= D�"EF

I
+ D�"EF

I
, where H = + + 2 

and+ ≥ 1. Again, this does not hold because �"E , �"E and �"E 
are positive integers and it is well known that Equation (1) 

does not hold for	� = 4. 

4. Discussion 

Note that the proofs of Lemma 3.1, 3.2, 3.3, Theorem 3.4 

and Corollary 3.5 still hold for any odd� > 3. The assumption 

that � > 9 is made only to align with the fact that the cases of 

odd � ≤ 9  have already been dealt with by the various 

authors. 

5. Conclusions 

This paper deals with the general problem of finding an 

elementary proof of FLT. As is outlined in Section 1, several 

elementary partial proofs of FLT have been established over 

the years by various authors. In this work, another elementary 

partial proof of FLT has been established, which may not 

necessarily be viewed as complementary to the ones outlined 

in Section 1 as it is of a different nature. 

Since the partial proof of FLT in this work, which is 

Corollary 3.5, asserts that there are no positive integers �, �, � 
satisfying the equation �� = �� + �� for any positive integer 

� > 9, where � = � − � does not divide	� and - = � − � =
1 , the remaining gap to show that there are no positive 

integers	�, �, � satisfying the equation �� = �� + �� for any 

positive integer � > 9 , which we recommend for future 

research, is to show that there are no positive integers �, �, � 
satisfying the equation �� = �� + �� for any positive integer 

� > 9, where � = � − � does not divide � and - = � − � >
1 ; or �  divides y and - ≥ 1.	Together with the fact that 

elementary proofs of FLT are known for � ≤ 9, this would 

then complete an elementary proof of FLT. 
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